Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 193(3): 296-312, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36509119

RESUMO

The intestines play a crucial role in the development of sepsis. The balance between autophagy and apoptosis in intestinal epithelial cells is dynamic and determines intestinal permeability. The present study focused on the potential role of autophagy in sepsis-induced intestinal barrier dysfunction and explored the mechanisms in vivo and in vitro. Excessive apoptosis in intestinal epithelia and a disrupted intestinal barrier were observed in septic mice. Promoting autophagy with rapamycin reduced intestinal epithelial apoptosis and restored intestinal barrier function, presenting as decreased serum diamine oxidase (DAO) and fluorescein isothiocyanate-dextran 40 (FD40) levels and increased expression of zonula occludens-1 (ZO-1) and Occludin. Polo-like kinase 1 (PLK1) knockdown in mice ameliorated intestinal epithelial apoptosis and the intestinal barrier during sepsis, whereas these effects were reduced with chloroquine and enhanced with rapamycin. PLK1 also promoted cell autophagy and improved lipopolysaccharide-induced apoptosis and high permeability in vitro. Moreover, PLK1 physically interacted with mammalian target of rapamycin (mTOR) and participated in reciprocal regulatory crosstalk in intestinal epithelial cells during sepsis. This study provides novel insight into the role of autophagy in sepsis-induced intestinal barrier dysfunction and indicates that the PLK1-mTOR axis may be a promising therapeutic target for sepsis.


Assuntos
Enteropatias , Sepse , Camundongos , Animais , Sirolimo/farmacologia , Sirolimo/metabolismo , Mucosa Intestinal/metabolismo , Enteropatias/metabolismo , Autofagia , Serina-Treonina Quinases TOR/metabolismo , Sepse/complicações , Sepse/metabolismo , Mamíferos , Quinase 1 Polo-Like
2.
J Cell Mol Med ; 25(20): 9724-9739, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34514712

RESUMO

Sepsis and sepsis-induced skeletal muscle atrophy are common in patients in intensive care units with high mortality, while the mechanisms are controversial and complicated. In the present study, the atrophy of skeletal muscle was evaluated in sepsis mouse model as well as the apoptosis of muscle fibres. Sepsis induced atrophy of skeletal muscle and apoptosis of myofibres in vivo and in vitro. In cell-based in vitro experiments, lipopolysaccharide (LPS) stimulation also inhibited the proliferation of myoblasts. At the molecular level, the expression of polo-like kinase 1 (PLK1) and phosphorylated protein kinase B (p-AKT) was decreased. Overexpression of PLK1 partly rescued LPS-induced apoptosis, proliferation suppression and atrophy in C2C12 cells. Furthermore, inhibiting the AKT pathway deteriorated LPS-induced atrophy in PLK1-overexpressing C2C12 myotubes. PLK1 was found to participate in regulating apoptosis and E3 ubiquitin ligase activity in C2C12 cells. Taken together, these results indicate that sepsis induces skeletal muscle atrophy by promoting apoptosis of muscle fibres and inhibiting proliferation of myoblasts via regulation of the PLK1-AKT pathway. These findings enhance understanding of the mechanism of sepsis-induced skeletal muscle atrophy.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sepse/complicações , Animais , Biomarcadores , Linhagem Celular , Sobrevivência Celular , Modelos Animais de Doenças , Imuno-Histoquímica , Imunofenotipagem , Masculino , Camundongos , Modelos Biológicos , Atrofia Muscular/diagnóstico , Mioblastos/metabolismo , Mioblastos/patologia , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...